
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the

University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site  http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

On the Materialization of WebViews

by Alexandros Labrinidis, Nick Roussopoulos 

CSHCN T.R. 99-14
(ISR T.R. 99-26)



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
1999 2. REPORT TYPE 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
On the Materialization of WebViews 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Army Research Laboratory,2800 Powder Mill Road,Adelphi,MD,20783 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

13 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Sponsored by: U.S. Army Research Laboratory

On the Materialization of WebViews�

Alexandros Labrinidis Nick Roussopoulosy

labrinid@cs.umd.edu nick@cs.umd.edu

Department of Computer Science and Institute for Systems Research,

University of Maryland, College Park, MD 20742

EXTENDED ABSTRACT

Abstract

A WebViewis a web page that is automatically created from base data, which are usually

drawn from a DBMS. A WebView can be eithermaterializedas an html page at the web server,

or virtual, always being computed on-the-fly. For the materialized case, updates to base data

lead to immediate recomputation of the WebView, whereas in the virtual case, recomputation is

done on demand with each request. We introduce thematerialize on-demandapproach which

combines the two strategies, and generates WebViews on demand, but also stores the results

and re-uses them in the future if possible. Deciding on one of the three materialization policies

for each WebView is clearly a performance issue. In this paper, we give the framework for the

problem and provide a cost model, which we test with experiments on a real web server.
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1 Introduction

The web is increasingly being used as the means to do everyday tasks, from reading the newspaper to

shopping or paying bills. One common denominator for all these activities is that the corresponding

web sites provide some sort ofpersonalization, tailored to the style and needs of each individual

([B+98]). Personalized web pages, that are automatically created from base data, are one of the

many instances of WebViews. In general, we defineWebViewsas web pages that are automatically

constructed from “base data” using a program or a DBMS query.

Similarly to traditional database views, WebViews can be in two forms:virtual or materialized.

Virtual WebViews are computed dynamically on-demand, usually by a CGI script, whereas materi-

alized WebViews are pre-computed and stored as static HTML pages. In the virtual case, the cost

to compute the WebView increases the query response time1. On the other hand, in the materialized

case, every update to the base data leads to a WebView refresh, which increases the server load.

Having a WebView materialized can potentially give significantly lower query response times,

provided that the update workload is not heavy. Even if the WebView computation is not very

expensive, by keeping it materialized we eliminate the latency of going to the DBMS every time,

which could lead to DBMS overloading ([Sin98]). However, if the update workload is heavy, having

the WebView materialized can lead to a degradation in performance, as every update will cause a

refresh. In this case,deferring the updates until the time of query ([RK86]) is the best solution.

Clearly, the decision whether to have a WebView materialized or virtual at the server, theWebView

materialization problem, is a performance issue.

WebView materialization is different from traditionalweb caching: WebView materialization

aims at eliminating the processing time needed for repeated generation, whereas web caching strives

to eliminate unnecessary data transmissions across the network ([Mal98]). Also, WebView materi-

alization is performed at the web server, whereas web caching is done at the clients or at proxies.

However, although different, both techniques improve web server performance.

The WebView materialization problem is similar to that of deciding which views to materialize

in a data warehouse ([GM95, Gup97, Rou98]), known as theview selection problem. There are

however many differences. First of all, although both problems aim at decreasing query response

times, warehouse views are materialized in order to speed up the execution of a few & long analyti-

cal (OLAP) queries, whereas WebViews are materialized to avoid repeated execution of many small

OLTP-style queries. Secondly, since WebViews are defined after user requests, unlike warehouse

views, the resulting search space for the decision problem is significantly smaller. Moreover, we

have accurate statistics on the access and update frequencies for all the WebViews from the web

server logs. Thirdly, WebView materialization means avoiding an extra layer of software (i.e. gen-

1We use the termqueriesto refer to web page requests for a particular WebView.
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erating the WebView by executing a program or a DBMS query), whereas in the warehouse case

one always has to issue a query to the DBMS. Finally, the general case of the WebView material-

ization problem has no constraints, whereas most view selection algorithms impose some resource

constraints (e.g. space requirement or maintenance time allowed [KR99]).

In the web context, although there is a lot of recent literature on building & maintaining web

sites ([AMM98, FFK+98]), on querying the web ([MMM97, FLM98, GW98]) and on integrating

heterogeneous data sources ([CDSS98, MZ98]), there is very little work on the performance issues

associated with materializing WebViews. [MMM98] provide an algorithm to support client-side

materialization of WebViews, and [Sin98], [AMR+98] present algorithms to maintain them incre-

mentally. However, to the best of our knowledge, this is the first attempt to provide a quantitative

solution to the problem of deciding the best materialization strategy for WebViews.

In this paper we give the framework for the WebView materialization problem, and also propose

a hybrid approach that combines the advantages of both the virtual and the materialized approaches

(Section 2). We also present an approximate cost model for the WebView materialization problem

in Section 3. Finally, we present the results of our experiments on a real web server in Section 4 and

our conclusions in the last section.

2 WebView Materialization Problem

When a WebView is materialized, any update to the base data leads to animmediaterefresh of the

derived WebView (in addition to the update to the underlying DBMS). The refresh can either be

incremental or a complete recomputation2. Requests for such a WebView, however, are very fast,

since they are pre-computed. On the other hand, virtual WebViews are always generated on-the-fly.

This means that updates to the base data are only applied to the DBMS, but queries have to wait for

the WebView to be recomputed every time. Clearly, both of these approaches can cause significant

performance degradation if not used properly (e.g. if materializing a WebView that has a lot of

updates and very few requests).

There is another, hybrid alternative: generate the WebViewon demand(like the virtual ap-

proach), but also store the results and re-use them in the future (like the materialized approach), if

possible. We call this approachmaterialize on-demand. Under this strategy, an update to the base

data must invalidate the derived WebView (but it will not cause a refresh). When the server gets a

request for the WebView, it first checks whether it has been invalidated and, if not, simply returns

the saved copy. If the view has been invalidated since the last time it was saved, then the server

2Since the materialized WebView is in html format, it is difficult to do an incremental refresh, although not impossi-
ble. For the remainder of the paper, we assume that a complete recomputation is taking place after every update to the
base data.

3



needs to generate the WebView and save it again.

We formulate theWebView materialization problemas:

For every WebView at the server, select the materialization strategy (virtual, material-

ized, materialized on-demand) forminimizing the average query response timeon

the clients. We assume that there is no storage constraint at the server.

The assumption that there is no storage constraint on the server is not unrealistic, since, in our case,

storage means disk space (and not main memory) and also WebViews are expected to be relatively

small3. In this paper, we also assume a no staleness requirement, i.e. the WebViews must always be

up to date. This is a reasonable requirement, since users would rather access fresh data.

Clearly the WebView materialization decision is heavily dependent on the update and access

patterns for the WebViews, whereas the calculation cost and the size could also play some role.

There are some classes of WebViews for which a straightforward solution to the materialization

problem exists. For example, WebViews with a lot of requests which do not get a lot of updates

should be materialized, since keeping them up-to-date “pays off” because of the high access rate.

An example for this scenario are the web pages in Yahoo (http://www.yahoo.com) which don’t

get many updates and are thus kept as HTML pages. On the other hand, WebViews with a lot of

updates and infrequent access should be virtual, since the overhead of keeping them fresh is not

warranted by the number of requests. An example for this case is a personalized stock portfolio

page from a web site offering real-time stock market data. Since the update frequency is very high

(stock prices can change many times in a second), the corresponding WebView would have to be

virtual and generated on-demand using CGI scripts.

Although some classes of WebViews have straightforward solutions to the materialization prob-

lem, this is not the case in general. To find an analytical solution to the WebView materialization

problem, we have developed a cost model, which we present in the next section.

3 Cost model

We want to compare the three different materialization policies (materialized, virtual, materialized

on-demand) for a WebViewvi and decide which one will lead to smaller query response times under

given workload conditions. We calculate the cost to the server under each materialization policy for

vi, however we make the distinction betweenupdate cost, CU , which is load on the server because

of the application of the updates, and theaccess cost, CA, which is load on the server because of the

user requests forvi. We expected and verified in the experiments that the query response times are

3The average web page is 30KB ([AW97]), so a single 50GB hard disk for example could hold approximately 1.5
million pages.
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going to be more “sensitive” to the access cost, since it is in the “critical path” of each request. Let

fa(vi) be theWebView access frequencygiven in some unit of time, say minutes, andfu(vi) be the

WebView update frequency. fa(vi) includes requests to WebViewvi from all clients. Finally, let the

cost to recomputevi becgen(vi).

Materialized Policy If vi is kept materialized, then the cumulative update cost is

CU
mat(vi) = fu(vi)� (cgen(vi) + cw(vi)) (1)

wherecw(vi) is the cost to writevi to disk4.

The cumulative access cost, ifvi is kept materialized is:

CA
mat(vi) = fa(vi)� cr(vi) (2)

wherecr(vi) is the cost to readvi from disk4.

Since we wish to minimize the average query response time, we must give more weight to the

access cost than the update cost, because the access cost has adirect effect on the response time,

whereas the update cost has only anindirect effect (by increasing the server load). This asymmetry

is due to the fact that a request for a web page can be serviced while an update on the same page

takes place, in other words there is no locking or blocking on typical web servers.

Following this idea, to get the overall cost for keepingvi materialized, we introduce a weight

factor for the access cost,� � 1, which is expected to be platform-dependent. The total cost is:

Cmat(vi) = CU
mat(vi) + �� CA

mat(vi) (3)

Virtual Policy In contrast to the materialized strategy, ifvi is kept virtual, there will be no update

cost whatsoever5. Therefore

CU
virt(vi) = 0 (4)

On the other hand, the cumulative access cost ifvi is kept virtual is:

CA
virt(vi) = fa(vi)� cgen(vi) (5)

wherecgen(vi) is the cost to recomputevi, and, in this case, it is “suffered” by every query.

4For simplicity one could assume that all WebViews have approximately the same size, kept constant in the presence
of updates, and hence the cost to read or write a WebView to disk would be the same for all.

5We do not take into account the cost to update the base data, since this will be the same with all three materialization
policies.
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Like in the materialized case, we have to use� when calculating the total cost for the virtual

policy:

Cvirt(vi) = CU
virt(vi) + �� CA

virt(vi) (6)

Materialized On-Demand Policy If vi is kept materialized on-demand, then the cumulative up-

date cost is only the invalidation cost:

CU
mod(vi) = fu(vi)� cinv (7)

wherecinv is the cost to invalidate one WebView.

The access cost ofvi under a materialized on-demand policy, has a lookup cost on every request

when the server checks to see if the WebView has been invalidated. Furthermore, for every update

we also have to include the WebView generation cost plus a small cost to save the WebView to

disk. When the access frequency is higher than the update frequency forvi, we expect to have better

performance compared to the virtual strategy, since in that case we only pay the cost of reading the

saved WebView from disk for the extra accesses, instead of recomputing it all the time. Here is the

upper bound6 for the access cost tovi under a materialized on-demand policy:

CA
mod(vi) � fa(vi)� cchk + fu(vi)� (cgen(vi) + cw(vi)) + b� (fa(vi)� fu(vi))� cr(vi) (8)

wherecchk is the cost to check if one WebView has been invalidated, andb is 1 if fa(vi) > fu(vi),

and 0 otherwise.

Finally, the total cost for the materialized on-demand policy is:

Cmod(vi) = CU
mod(vi) + �� CA

mod(vi) (9)

WebView Materialization Problem Let V be the set of WebViews in our system and letVmat be

the subset of WebViews that are materialized,Vvirt the ones that are virtual, andVmod the ones that

are materialized on-demand. The total cost would be:

Ctotal =
X

vi2Vmat

Cmat(vi) +
X

vj2Vvirt

Cvirt(vj) +
X

vk2Vmod

Cmod(vk) (10)

With the help of Equations 1 - 10 we can rephrase the WebView materialization problem as:

partition V into Vmat, Vvirt, Vmod, such thatCtotal is minimized.

By default, web servers log all page requests, so, estimatingfa(vi) for any WebViewvi is not

difficult. Calculatingfu(vi) and the rest of the costs is easy too, and we can assume thatcr(vi),

6We cannot calculate the exact cost, as it depends on the interleaving of updates and accesses tovi.
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cw(vi) will be approximately the same for all WebViews to make things even easier.

To get some intuition behind the formulas, we assume that all costs, except forcgen(vi) and

cgen(vi), are small and constant. Under this assumption, we can get someapproximationsfor

Cmat(vi), Cvirt(vi), Cmod(vi):

C 0

mat(vi) = fu(vi)� cgen(vi)

C 0

virt(vi) = �� fa(vi)� cgen(vi)

C 0

mod(vi) = �� fm(vi)� cgen(vi) + cover

(11)

wherefm(vi) is min(fa(vi); fu(vi)), andcover, is a composite cost to reflect the extra disk I/O that

the materialize on-demand approach has to make. We expect that the materialize on-demand ap-

proach will give better performance than the classic virtual strategy, in cases wherefa(vi) > fu(vi).

Furthermore, we can see that in order to choose between the materialize and materialize on-demand

policies, we should consult the weighted ratio of accesses to updates,� = ��fa(vi)
fu(vi)

. A ratio � > 1

would suggest that the materialized approach is better, otherwise a materialized on-demand or a

virtual strategy would be expected to yield better performance.

4 Experiments

For our experiments we used two machines, a SUN UltraSparc-5 with 320MB of memory, running

Solaris 2.6 and an AlphaStation 255 with 64MB of memory, running Digital Unix V4.0. The web

server, Apache version 1.3.6 (http://www.apache.org) , ran concurrently with the update pro-

cess on the SUN machine, while the clients were running on the Alpha. All machines were on the

same local area network in order to eliminate (uncontrollable) network latency from our experi-

ments. In every experiment, each client would read a set of queries from a script, send the requests

to the web server and wait for the reply, measuring the elapsed time for each query (averaged over

multiple runs).

Workload Our workload consisted of 100 WebViews. Their access rates followed the Zipf distri-

bution with a theta of 0.7, as suggested in [BCF+99]. The total accesses to the web server averaged

to about 12 requests per second. This should correspond to a quite heavy load on the server, of about

1 million hits per day. For comparison, our departmental web server (http://www.cs.umd.edu)

gets about 70,000 requests a day which correspond to only about 0.8 requests per second.

While the access rate for each WebView was kept the same for all experiments, we varied the

update rate and the materialization policy for 10 out of the 100 WebViews, ourtest group. The

remaining 90 WebViews had no updates at all, were always materialized and played the role of a
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“background” load to the server. The sizes for the WebViews were on average 30KB ([AW97]) and

the calculation cost was rather small, 0.5 seconds.

Experiments The test group in our experiments consisted of 10 WebViews in the “middle” of the

access rate distribution (with access rates about 3-4 requests per minute). We varied the update rate

from 0 up to 30 updates per minute for each of the 10 WebViews. For each update rate, we ran three

different experiments, one for each materialization policy.
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Figure 1: Total avg query response time

We plot the average query response time for all queries (including the ones in the test group) in

Fig. 1. The x-axis is the update rate for the test group, in updates/min, whereas the y-axis is the total

average query response time, in seconds. Themat line corresponds to the case where all WebViews

from the test group are kept materialized (i.e. the updates cause all WebViews to be refreshed in the

background), thevirt line to the virtual case (i.e. the query result is recomputed on every request)

and themod line corresponds to the case where all WebViews in the test group are materialized

on-demand (i.e. the query result is recomputed on request, but also saved for future use and updates

invalidate the saved copy).

We see from Fig. 1 that in the virtual case, the overall performance is not affected by the update

rate (i.e. thevirt line is almost straight), as it was expected. On the other hand, the materialize on-

demand policy, depending on the interleaving of updates and requests, can have better performance

over the virtual approach, since it re-uses pre-computed results as much as possible, whereas the

virtual approach blindly recomputes each WebView on every request. Furthermore, if we look at

the average query response time for only the WebViews in the test group (Fig 2), we verify that the
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Figure 2: Test group avg query response time

materialize on-demand policy outperforms the virtual strategy when the update rate is less than the

access rate (first two points in the graph).
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Figure 3: (All�Test group) avg query response time

From Figures 1 and 2 we see that the materialized policy performs really well, even for update

rates far exceeding the access rate, although, eventually, the virtual & the materialized on-demand

strategies are expected to perform better for very high update rates. So where do the savings for the

materialized strategy come from? We plot in Fig. 3, the average query response time of all queries

except for those in the test group. From Fig. 3, we see that the reason for this great performance
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is that the materialized policy “penalizes” the rest of the views, by slightly increasing their query

response times (since the updates done at the background increase the load at the server). On the

other hand, the performance of the rest of the views is almost not affected with the materialized

on-demand and virtual approaches, since the cost of the updates is inflicted on the query response

time of the updated WebView.

5 Conclusions

In this paper, we have introduced the materialize on-demand policy for WebViews, that combines

the materialized and virtual strategies. We also formulated the WebView materialization problem,

and described a cost model to help decide among the three materialization strategies (materialized,

virtual, materialized on-demand). Our experiments showed that the materialized policy usually

leads to better performance, at the expense, however, of the other WebViews. On the other hand, if

the update rate is really high compared to the access rate, the virtual and materialized on-demand

strategies have better overall performance than the materialized policy, since they defer the updates

till the time of the query. Finally, the materialized on-demand strategy outperforms the virtual policy

when the access rate is higher than the update rate, since it avoids recomputation of the WebView

when there are no updates.

We are currently implementing the materialized on-demand policy for the web server of the

AMASEproject (http://amase.gsfc.nasa.gov) . As part of our future work, we want to drive

our experiments with trace data from a commercial web server.
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